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Abstract

Stochastic ordinary and partial differential equations (SOPDEs) in various forms arise and are successfully utilized

in the modeling of a variety of physical and engineered systems such as telecommunication systems, electronic circuits,

cosmological systems, financial systems, meteorological and climate systems. While the theory of stochastic partial and

especially ordinary differential equations is more or less well understood, there has been much less work on practical

formulations and computational approaches to solving these equations. In this paper, we concentrate on the stochastic

non-linear Schr€odinger equation (SNLSE) that arises in the analysis of wave propagation phenomena, mainly moti-

vated by its predominant role as a modeling tool in the design of optically amplified long distance fiber telecommu-

nication systems. We present novel formulations and computational methods for the stochastic characterization of the

solution of the SNLSE. Our formulations and techniques are not aimed at computing individual realizations, i.e.,

sample paths, for the solution of the SNLSE �a la Monte Carlo. Instead, starting with the SNLSE, we derive new

systems of differential equations and develop associated computational techniques. The numerical solutions of these

new equations directly produce the ensemble-averaged stochastic characterization desired for the solution of the

SNLSE, in a non-Monte Carlo manner without having to compute many realizations needed for ensemble-averaging.
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1. Introduction

Stochastic models in the form of stochastic ordinary and partial differential equations (SOPDEs) are
used for the representation and analysis of various kinds of situations and systems. For example,

random variables and stochastic processes are used to represent fluctuating external forces on the

system under consideration. In other cases, they are used to model system parameters that fluctuate

with time or take random values for different realizations of the system. SOPDEs are also utilized to

significantly reduce the number of equations and variables in a dynamical system model by exploiting

multiscale behavior and representing rapidly varying ‘‘modes’’ as stochastic forcing [1]. SOPDEs nat-

urally arise in the modeling of a variety of physical and engineered systems such as telecommunication

systems [2], electronic circuits [3], cosmological systems [4], financial systems [5], meteorological and
climate systems [1].

The theory of SOPDEs is quite well developed [6–9]. However, there is much less work in the lit-

erature on practical computational approaches to solving these equations. Moreover, most of the work

on numerical techniques for SPODEs has been concentrated on stochastic differential (not partial)

equations, and they are directed at computing individual realizations or sample paths for the solution

[10,1]. In most practical applications, a compact ensemble-averaged stochastic characterization of the

solution is needed. With approaches that compute individual realizations for the solution, such sto-

chastic characterizations can be obtained via the Monte Carlo method, by generating many sample
paths for the solution followed by ensemble-averaging for quantities of interest. Since a large number

of sample paths are typically required for meaningful statistics, Monte Carlo approaches are usually

inefficient [3]. Moreover, they may also run into accuracy problems [3]. To address these problems with

the Monte Carlo approach, Fokker–Planck equation based approaches have been proposed [1,3,11,12].

The Fokker–Planck equation is a partial differential equation for the multi-dimensional time-varying

probability density for the variables of the original SOPDE. Numerically solving for the density of a

multivariate system is often prohibitively expensive due to mainly the very large size of the state space

that must be sampled [1,3]. Fokker–Planck equation based approaches have been successful only in
cases where the number of variables (including the additional variables that may have been generated

using the method of lines for SPDEs) in the SOPDE is not more than a few [1,11,12]. The solution of

the Fokker–Planck equation produces the full time-varying multivariate probability density, which can

be used to compute all kinds of compact stochastic characterizations required by the application.

However, in most applications, the full probability density is not really required. Instead, only up to

second-order probabilistic characterizations, i.e., time-varying means and variances of, and covariances

among, the variables are more than sufficient. This can be inferred by considering that even non-

linear systems behave approximately linearly with small fluctuating noisy excitations, and that most
noise sources that arise in both physical and engineered systems are approximately Gaussian due to

the Central Limit Theorem. For Gaussian random variables, means, variances and correlations fully

specify the multivariate density. Linear transformations of Gaussian random variables and stochastic

processes are also Gaussian. Thus, the compact probabilistic characterization required by the

application can be computed using only these first- and second-order moments of the probability

density [3].

In this paper, we concentrate on the stochastic non-linear Schr€odinger equation (SNLSE) that arises in

the analysis of wave propagation phenomena in various situations and systems. We are mainly motivated
by the predominant role of the SNLSE as a modeling tool in the design of optically amplified long distance

fiber telecommunication systems [2]. We use optical fiber communication systems as a case study to

demonstrate the practical applicability and usefulness of our work. In Section 2, we present a short

overview of optical fiber communication systems and the challenges that faces one from a modeling,

analysis and design perspective. We also discuss the importance of the SNLSE in this field as the governing



150 A. Demir / Journal of Computational Physics 201 (2004) 148–171
equation for signal and noise propagation in optical fibers. We provide Section 2 for the reader who is

interested in learning about optical fiber communication systems, and for a discussion of the background

and terminology needed for a better appreciation of the computational results that will be presented in
Section 5. The reader who is interested only in the formulations and the computational techniques for the

SNLSE can skip Section 2 without loss of continuity. We believe that the usefulness of the work presented

in the paper is by no means restricted to the analysis of optical fiber communication systems, and that it will

find applications in the analysis of other stochastic wave propagation phenomena, and that it is a novel and

worthwhile contribution in the general setting of computational techniques for stochastic partial differential

equations.

We first present novel formulations and computational methods for the stochastic characterization of

the solution of the SNLSE. Unlike almost all previous approaches, our formulations and techniques are not
aimed at computing individual realizations, i.e., sample paths, for the solution of the SNLSE �a la Monte

Carlo. Instead, in Section 3, starting with the SNLSE, we formulate new systems of differential equations

for the second-order moments, i.e., time-varying means, variances, correlation functions, and spectral

densities for the solution of the SNLSE.

The numerical solutions of these new equations directly produce the ensemble-averaged stochas-

tic characterization desired for the solution of the SNLSE, in a non-Monte Carlo manner without

having to compute many realizations needed for ensemble-averaging. Our derivations are based on

linear(ized) {time,space}-varying, non-stationary formulations. This approach is similar, in spirit, to
the linear(ized), time-varying formulations for noise analysis in analog/RF electronic circuits,

where the governing equations are systems of SODEs generated by Kirchoff’s voltage and current

laws [3].

Then, we develop computational techniques for the solution of these newly derived equations for the

second-order stochastic characterization of the solution of the original SNLSE. In doing so, we utilize

linearly (diagonally) implicit multistep (not to be confused with implicit linear multistep) integration

methods. Linearly implicit multistep integration schemes were originally proposed for solving stiff non-

linear PDEs [13,14]. In this work, we use the idea behind the linearly implicit schemes in a different context,
for solving purely linear systems of differential equations that we derive for the second-order stochastic

characterization discussed above. In Sections 4.2 and 4.3, we explain how we generalize the idea behind the

linearly implicit schemes for our setting, and how we separate these purely linear sets of equations into stiff

and non-stiff parts.

The contributions of this work can be summarized as follows:

• Two novel, non-Monte Carlo formulations for solving the stochastic non-linear Schr€odinger equation:
Section 3.

s Covariance matrix based formulation: Section 3.2.
s Frequency-decomposed formulation: Section 3.3.

• Novel, non-Monte Carlo, efficient and accurate computational techniques (that incorporate linearly im-

plicit integration schemes) for the solution of the newly derived equations to produce practical compact

ensemble-averaged probabilistic characterizations directly usable in applications. The computational

techniques described in Section 4 feature.

s Efficient numerical method for the solution of Lyapunov matrix equations with structured coefficient

matrices: Section 4.2.

s Efficient computation of the frequency dependence of spectral densities either using a
parallelizable scheme or in approximate (Pad�e approximation) analytical (rational) form: Section

4.3.

• Practical application of the formulations and the computational techniques developed in the paper to the

investigation of signal–noise mixing due to the optical fiber non-linearities in fiber-optic telecommunica-

tion systems and generation of design guidelines: Section 2 and Section 5.
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2. Optical fiber communication systems and SNLSE

The optical fiber transmission links form the backbone of the communications infrastructure. Almost all
of voice and data (internet) traffic is routed through terrestrial and submarine optical fiber links, connecting

the world together. Invention of the optical amplifiers (OAs) and wavelength-division multiplexing (WDM)

technology enabled very high capacity optical fiber communication links that run for thousands of kilo-

meters without any electronic repeaters, but at the same time brought many design challenges.

In WDM optical fiber communications, information bits are used to modulate the (light) carriers at

many wavelengths (colors), which are then transmitted in a single strand of fiber. The signal levels dete-

riorate during transmission due to the loss of the optical fiber, which need to be restored by OAs for reliable

detection. OAs have very wide bandwidths, e.g., 4 THz, they can amplify many wavelength carriers (data
channels) at once. As electronic amplifiers do, OAs add noise (�white and stationary) to the signal they

amplify. A long-haul optical fiber communication link may be several thousands of kilometers long, and it

may have tens of optical amplification sites placed at regular intervals (�80 km) along the link, as shown in

Fig. 1. The information signals in a number of WDM channels and the noise added by the OAs travel

together in the optical fiber and impinge on the electronic receiver. The optical fiber is a lossy, dispersive,

and non-linear transmission medium. Due to the non-linearity of the fiber, the information signals at dif-

ferent wavelengths and noise added by the OAs mix with each other as they propagate together along the

fiber. The propagation of the signals and noise in an optical fiber is governed by a non-linear partial dif-
ferential equation (PDE), the so-called generalized non-linear Schr€odinger equation (NLSE), which can be

derived directly from Maxwell’s equations that govern the propagation of light waves in a dielectric

waveguide, i.e., the optical fiber.

In the design of an optical fiber communication link, the prediction of the deterioration the information

signals experience due to the non-linearity of the optical fiber and the optical noise generated by the OAs is

essential. The formulations and the computational techniques we develop in this paper can be used for the

analysis of the mixing of the information signals with noise, as opposed to the mixing of the information

signals with each other, due to the fiber non-linearity. We use this problem as a case study to demonstrate
the practical applicability and usefulness of our techniques.

The mixing of the information signals with each other is also of great importance in systems design. We

touch upon this phenomenon on several occasions in the paper, but a detailed treatment of signal–signal

mixing analysis is beyond the scope of this work. There has been considerable effort and tremendous

progress made on this problem in the literature. However, the need for more efficient, semi-analytical

analysis techniques is still there.
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Fig. 1. WDM optical fiber communication link.
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Commonly, the prediction of noise–signal mixing is performed with a Monte Carlo type propagation

simulation, where the information signals and randomly generated optical noise are simulated together in a

numerical solution of the NLSE. This kind of simulation is inefficient, because one needs to repeat the
simulation for sufficiently many sample paths of the noise process. It also is incapable of providing systems

design intuition. In a Monte Carlo type simulation, one simulates signal–signal and signal–noise mixing

together, which hides the separate and quite different performance degradation mechanisms due to these

mixing processes. The ‘‘separated’’ analysis of these mechanisms, in fact, provides valuable systems design

intuition, as we will demonstrate in this paper.

There has also been analytical approaches to the noise–signal mixing analysis problem in optical fiber

propagation, and considerable progress has been made. It was first investigated in 1990 by Gordon and

Mollenauer [15]. In their original treatment, they considered a system with a single unmodulated carrier 1,
and ignored dispersion in the fiber. The dispersion in the fiber is of paramount importance in the analysis of

signal–noise mixing. Kikuchi [16] included dispersion in his analysis, but it was also restricted to a single

unmodulated carrier. Poggiolini and Benedetto et. al. [17] considered a multi-wavelength system with a

comb of unmodulated carriers 2 and took dispersion into account in their innovative analytical approach.

In this paper, we consider the most general case, a multi-wavelength system with modulated carriers 3

with dispersion included. The treatment of this most general case requires the concepts of non-stationarity

and frequency correlation for stochastic processes, i.e., noise signals, which we will discuss later. In Section

3, we describe novel formulations for the analysis of the interplay, i.e., mixing, between the information
signals, i.e., modulated light carriers, and the optical noise due to the fiber non-linearity. As with many

other non-linear and non-stationary stochastic problems, the problem in hand is conceptually challenging

and computationally complex. We try to alleviate these difficulties through the use of semi-analytical

formulations and sophisticated numerical techniques for the computational problem. In this context,

‘‘semi-analytical’’ is used to mean that, even though the formulation itself is fully analytical, it does not

yield to a closed-form solution, and still requires the numerical solution of (partial) differential equations.

However, the equations that need to be solved are different, and involve different variables, compared with

the ones solved with the brute-force Monte Carlo simulation approach. In particular, we use linear(ized)
{time,space}-varying, non-stationary formulations. A linearization formulation was also used by Poggiolini

et al. [17].

We describe, in Section 4, the numerical methods built on top of our formulations discussed above and

their practical implementation for optical fiber communication link analysis. Then, in Section 5, we present

results generated by the proposed and implemented techniques in the investigation of signal–noise mixing

due to the optical fiber non-linearities. We discuss the use of the generated results in determining the

performance of communication links, and discuss system design implications.
1 An unmodulated carrier signal, in mathematical terms, has a spectrum with a single d-function situated at the frequency of the

monochromatic light generated by the laser. Hence, in time domain it is expressed as exp jxctð Þ, where j ¼
ffiffiffiffiffiffiffi
�1

p
and xc is the frequency

of the monochromatic light generated by the laser.
2 A signal composed of a comb of unmodulated carriers, in mathematical terms, has a spectrum with a number of d-functions

situated at the frequencies of the light generated by multiple lasers. These d-functions are typically equally spaced in frequency. Hence,

in time domain we have exp jxc1tð Þ þ � � � þ exp jxcN tð Þ where xc1 through xcN are the frequencies of the light generated by the multiple

lasers.
3 A modulated carrier signal can be expressed in mathematical terms as mðtÞ exp jxctð Þ, where j ¼

ffiffiffiffiffiffiffi
�1

p
, xc is the frequency of the

monochromatic light generated by the laser, and mðtÞ is the modulating information signal with a series of pulses encoding the 0s and

1s that need to transmitted. The spectrum of a modulated carrier is obviously not a d-function, but occupies a certain band of

frequencies around xc and has a certain functional form determined by the shapes, widths and the repetition rates of the pulses in the

modulating function mðtÞ.
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3. Non-Monte Carlo formulations for the solution of the stochastic NLSE

The non-linear Schr€odinger equation that governs the evolution of the complex envelope Uðz; tÞ for the
electric field of the propagating wave is given below

oUðz; tÞ
oz

¼ � 1

2
aUðz; tÞ � j

1

2
b2

o2Uðz; tÞ
ot2

þ 1

6
b3

o3Uðz; tÞ
ot3

þ jcjUðz; tÞj2Uðz; tÞ; ð1Þ

where t is time, z is the position along the propagation direction, a models the loss of the transmission

medium (assumed frequency/wavelength independent here), the terms with b2 and b3 model second- and

third-order dispersion (the effect of which is equivalent to an all-pass linear filter with phase distortion), the
term with c models the non-linearity of the transmission medium, and finally j ¼

ffiffiffiffiffiffiffi
�1

p
. First-order dis-

persion b1 has been factored out through a change of the position variable z, since it amounts to a pure time

delay, without any phase distortion. 4

Next, we derive a linear PDE for perturbation/noise analysis, and then in Section 3.2, we describe a

covariance matrix formulation for stochastic perturbation/noise characterization. This formulation directly

produces the compact ensemble-averaged second-order probabilistic characterization needed. 5 In Section

3.3, we develop a frequency-decomposed formulation for perturbation/noise analysis. This alternative

formulation has some benefits, its implementation can be parallelized for efficiency, and we further develop
it into a reduced-order-modeling formalism. 6

3.1. Derivation of linear PDE for perturbation analysis

Let Aðz; tÞ be the solution of (1) without any noise in the system. Hence Aðz; tÞ satisfies (1). We describe

the numerical computation of Aðz; tÞ in Section 4. Aðz ¼ 0; tÞ is the initial condition. 7

We now consider the system with noise and perform the following three operations in sequence:

1. substitute Uðz; tÞ ¼ Aðz; tÞ þ aðz; tÞ in (1) where aðz; tÞ is a perturbation to Aðz; tÞ;
2. subtract (1), with Uðt; zÞ replaced by Aðz; tÞ, from the result of the first step above;

3. for linear(ized) noise analysis, ignore all terms, in the result of the second step above, that are not linear

in aðz; tÞ, justified by the fact that aðz; tÞ is much ‘‘smaller’’ than Aðz; tÞ.
and obtain

oaðz; tÞ
oz

¼ � 1

2
aaðz; tÞ � j

1

2
b2

o2aðz; tÞ
ot2

þ 1

6
b3

o3aðz; tÞ
ot3

þ 2jc Aðz; tÞj j2aðz; tÞ þ jcAðz; tÞ2aðz; tÞH; ð2Þ

where H denotes ‘‘complex-conjugate’’. In (2), aðz; tÞ is a complex-valued scalar function of z and t. We

decompose aðz; tÞ into its real (in-phase) and imaginary (quadrature) components
4 Values of the parameters for loss, dispersion and non-linearity for various kinds of optical fibers are available. (1) can be derived

directly from Maxwell’s equations [18]. Uðz; tÞ is the complex envelope for the electric field. The very high frequency (�200 THz)

lightwave carrier, as well as the transverse, i.e., x� y, electric field profile, have been factored out of (1) through some verified

approximations [18]. Uðz; tÞ and (1) are normalized in such a way that jUðz; tÞj2 is the instantaneous optical power.
5 The covariance matrix formulation produces a noise characterization which can be directly used in a communication system bit-

error-rate (BER) performance evaluation.
6 The frequency-decomposed formulation produces a noise characterization which can not be directly used in system BER

performance evaluation. However, the proper noise characterization needed for BER evaluation can be easily computed from the

frequency-decomposed noise characterization, which will be explained in Section 3.3.
7 Aðz ¼ 0; tÞ is the signal launched into the fiber. Note here that we do not place a restriction on the launched signal Að0; tÞ. Authors in

[17] assume that Að0; tÞ is a comb of continuous-wave (CW), i.e., unmodulated, optical carriers. Moreover, with their formulation, they

also ignore (four-wave) mixing among the carriers themselves.
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aðz; tÞ ¼ arðz; tÞ þ jaiðz; tÞ; Aðz; tÞ ¼ Arðz; tÞ þ jAiðz; tÞ: ð3Þ

With (3), (2) becomes

d

dz
arðz; tÞ
aiðz; tÞ

� �
¼ � 1

2
a

arðz; tÞ
aiðz; tÞ

� �
þ 1

2
b2

0 o2

ot2

� o2

ot2 0

" #
arðz; tÞ
aiðz; tÞ

� �
þ 1

6
b3

o3

ot3 0

0 o3

ot3

" #
arðz; tÞ
aiðz; tÞ

� �

þ c �2Arðz; tÞAiðz; tÞ �Arðz; tÞ2 � 3Aiðz; tÞ2

3Arðz; tÞ2 þ Aiðz; tÞ2 2Arðz; tÞAiðz; tÞ

� �
arðz; tÞ
aiðz; tÞ

� �
: ð4Þ

In the linear(ized) PDE (4) above, Aðz; tÞ is the deterministic signal, and aðz; tÞ is the stochastic perturbation
due to noise.

With the linearization performed above, we have effectively decomposed the solution of the SNLSE into

the sum of the two components Aðz; tÞ and aðz; tÞ. Aðz; tÞ is the deterministic time- and z-varying ensemble-
averaged mean for the solution, and aðz; tÞ is the zero-mean stochastic perturbation. Next, we describe

formulations for computing the second-order probabilistic characterizations, i.e., ensemble-averaged time-

varying variance, correlation function and spectral density, for the perturbation aðz; tÞ.
3.2. Covariance matrix formulation for perturbation analysis

We start by discretizing time t with Nt time points t1; t2; . . . ; tNt�1; tNt which are not necessarily equispaced.

We define the column vectors

acðzÞ ¼ aðz; t1Þ aðz; t2Þ � � � aðz; tNtÞ½ �T;
AcðzÞ ¼ Aðz; t1Þ Aðz; t2Þ . . .Aðz; tNtÞ½ �T;

ð5Þ

where the bold characters and the subscript c denote that acðzÞ and AcðzÞ are complex-valued vector

functions of z. The time dependence has disappeared because of the collocation points we have introduced.

We separate acðzÞ and AcðzÞ into their real and imaginary parts

acðzÞ ¼ arðzÞ þ jaiðzÞ; AcðzÞ ¼ ArðzÞ þ jAiðzÞ ð6Þ

and form the real-valued long column vectors

aðzÞ ¼ arðzÞT aiðzÞT
� �T

AðzÞ ¼ ArðzÞT AiðzÞT
� �T

: ð7Þ

We define

AðzÞ ¼ �2D ArðzÞ½ �D AiðzÞ½ � �D ArðzÞ½ �2 � 3D AiðzÞ½ �2

3D ArðzÞ½ �2 þD AiðzÞ½ �2 2D ArðzÞ½ �D AiðzÞ½ �

� �
; ð8Þ
B2 ¼
0 D2

�D2 0

� �
; B3 ¼

D3 0

0 D3

� �
; ð9Þ

where D2 and D3 are second-order and third-order differentiation operators (or matrices) in time, and D �½ �
is a diagonal operator (or a diagonal matrix with the elements of the argument vector on the main diag-

onal). At this point, we do not make any assumptions on how the time differentiation operators D2 and D3

are implemented.

With the collocation for t introduced above and using Eqs. (7)–(9), the linear(ized) perturbation PDE in

(4) can be transformed into
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daðzÞ
dz

¼ � 1

2
aaðzÞ þ 1

2
b2B2aðzÞ þ

1

6
b3B3aðzÞ þ cAðzÞaðzÞ: ð10Þ

Now we form

d aðzÞaðzÞT
h i

dz
¼ daðzÞ

dz
aðzÞT þ aðzÞ daðzÞ

T

dz
ð11Þ

and let KðzÞ be the z-dependent covariance matrix for the time-collocated stochastic perturbation

KðzÞ ¼ E aðzÞaðzÞT
h i

; ð12Þ

where E �½ � denotes the probabilistic ‘‘expectation’’ operator. Note that KðzÞ is a real and symmetric matrix.

Then, we substitute (10) in (11), take the expectation of both sides, and obtain

dKðzÞ
dz

¼ �aKðzÞ þ 1

2
b2 B2KðzÞ
�

þ KðzÞBT
2

�
þ 1

6
b3 B3KðzÞ
�

þ KðzÞBT
3

�
þ c AðzÞKðzÞ

h
þ KðzÞAðzÞT

i
; ð13Þ

which is a system of linear differential equations for the covariance matrix of the time-collocated stochastic

perturbation. We will refer to this equation as COVODE during the rest of our treatment. Note that even

though B2 and B3 above do not depend on z, AðzÞ is a z-varying coefficient matrix which can be calculated

by substituting Aðz; tÞ in (8). By solving the system of differential equations above, one can compute the

noise covariance matrix Kðz ¼ LÞ at the end of the fiber link given an initial launch condition Kðz ¼ 0Þ. The
numerical computation of KðzÞ is described in Section 4. Note that the stochastic perturbation aðz; tÞ is, in
general, a non-stationary stochastic process as a function of time t, which is captured by the covariance

matrix formalism described above.

The noisy perturbation exerted on the system can enter (13) in various ways, as an additional forcing

term or as a non-zero initial condition Kðz ¼ 0Þ. For our application, we are mainly interested in forcing

terms in the form Fdðzf Þ, where dðzf Þ is the Dirac’s delta function situated at z ¼ zf . In fact, a non-zero

initial condition Kðz ¼ 0Þ can be considered as a forcing term in the form Fdðzf Þ where zf ¼ 0 and

F ¼ Kðz ¼ 0Þ and a zero initial condition. Forcing terms in this form model localized, lumped (along the

propagation direction at z ¼ zf ) perturbations to the system. One could also consider distributed pertur-
bations and introduce them into (13) as a general z-dependent forcing term in the form PðzÞ. The t de-
pendence of the stochastic characteristics of the perturbation or noise influencing the system are captured

by the matrices F or PðzÞ above. For example, if these are diagonal matrices then the time samples of noise

are uncorrelated with each other and hence modeling a white noise excitation on the system. If the values on

the diagonal are all the same then this would be model for stationary white noise, and if they are different

then a model for non-stationary white noise. In general, with a full matrix with a non-constant diagonal,

one can model non-stationary colored noise excitations on the system.

3.3. Frequency-decomposed formulation for perturbation analysis

We now describe an alternative, frequency-decomposed formulation for the characterization of the

stochastic perturbation aðz; tÞ, which complements the covariance matrix formulation described above.

Note: If you have not read Section 2, you can skip the rest of this paragraph in italics. This formulation

can be considered as a generalization of the ‘‘transfer matrix’’ approach presented in [17], where the authors

consider the propagation of a comb of unmodulated carriers, together with optical noise. The ‘‘transfer matrix’’

they compute is composed of transfer functions from the noise sidebands of every optical carrier to the noise
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sidebands of all the other carriers in the comb. These sideband transfer functions can be interpreted as follows:

If one injects a ‘‘small’’ CW (continuous-wave, meaning unmodulated) signal (tone) at a frequency (at z ¼ 0

into the fiber along with the large CW carriers for the channels) that is x offset from a chosen carrier/channel,

then at z ¼ L along the fiber, ‘‘small’’ CW signals (tones) x offset from all of the carriers will appear. The

sideband transfer functions quantify the ratio of the magnitude of these generated tones to the one that was

injected. The frequency-decomposed formulation we will present next, is essentially a generalization of the

sideband transfer matrix approach to modulated carriers. Authors in [17] assumed that the noise around every

carrier is a narrowband signal, and the noise sidebands of neighboring carriers do not overlap. Through this

assumption, the total optical noise surrounding all the carriers can be decomposed into noise components

around every carrier. Even though the total optical noise surrounding all the carriers is non-stationary, the

noise components around the individual carriers becomes stationary for unmodulated carriers. Hence, the

authors in [17] ingeniously dodged away from having to deal with non-stationary processes and time-varying

transfer functions. However, for the treatment of the most general case with modulated carriers, non-sta-

tionarity and time-varyingness is unavoidable.

A (non-stationary) (Gaussian) stochastic process xðtÞ, i.e., noise signal, can be represented in frequency-

decomposed form by the following formal integral:

xðtÞ ¼
Z 1

�1
X ðt; f Þ expðj2pftÞnðf Þ df ; ð14Þ

where nðf Þ is a stationary white Gaussian process as a function of f . X ðt; f Þ is a deterministic complex

quantity. If xðtÞ is stationary, then X ðt; f Þ becomes independent of time t, and X ðt; f Þj j2 is then the spectral

density of xðtÞ.
The representation in (14) for a non-stationary stochastic process will be very useful in the derivation of

the alternative frequency-decomposed formulation for perturbation/noise analysis. However, the variances

of, and the correlations among, the noise/perturbation time samples are not readily available in this rep-

resentation, which are the desired stochastic characterizations in most applications. 8 The variances of, and

the correlations among, the noise samples are directly available from the noise covariance matrices pro-
duced by the covariance matrix formulation. One can compute them using the frequency-decomposed

representation in (14) as follows:

E xðt1Þxðt2ÞH
h i

¼
Z 1

�1
X ðt1; f ÞX ðt2; f ÞH expðj2pf ðt1 � t2ÞÞ df : ð15Þ

The equation above follows from (14) using the fact that nðf Þ in (14) is white and hence delta-correlated,

i.e.,

E nðf1Þnðf2Þ½ � ¼ d f1ð � f2Þ: ð16Þ

For the computation of the variances and correlations of the noise samples using (15), one needs to
compute the noise representation X ðt; f Þ for a range of frequencies f where the magnitude of X ðt; f Þ is

significant.
8 For example, variances and correlations are needed for communication system BER performance evaluation. To see why that is the

case, we need to consider what the electronic receiver exactly does with the signal impinges on it in a digital optical fiber

communication system. The electronic receiver at the end of the fiber link samples the received signal once every symbol period, at time

instants determined by the clock recovery circuitry. Then, the detector makes a decision on which symbol has been sent by the

transmitter, making ‘‘occasional errors’’ due to noise and other non-idealities. In evaluating the decision error rate of the detector, a

stochastic characterization of the noise samples is needed. For simple detectors, the stochastic characterization needed is just the

variances of the noise samples. For more complicated/advanced detectors the correlations between noise samples may also be needed.
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Next, we use the frequency-decomposed representation in (14) for the stochastic perturbation aðz; tÞ, in
which case, the representation becomes also a function of z. Below, we replace the real frequency variable f
with the complex frequency variable s. We substitute

arðz; tÞ ¼ hrðz; t; sÞ expðstÞ; aiðz; tÞ ¼ hiðz; t; sÞ expðstÞ ð17Þ

in (4), divide both sides of the equation by expðstÞ and obtain

d

dz

hrðz; t; sÞ
hiðz; t; sÞ

� �
¼ � 1

2
a

hrðz; t; sÞ
hiðz; t; sÞ

� �
þ 1

2
b2

o2

ot2

�
þ 2s

o

ot
þ s2

�
0 1

�1 0

� �
hrðz; t; sÞ
hiðz; t; sÞ

� �

þ 1

6
b3

o3

ot3

�
þ 3s

o2

ot2
þ 3s2

o

ot
þ s3

�
1 0

0 1

� �
hrðz; t; sÞ
hiðz; t; sÞ

� �

þ c
�2Arðz; tÞAiðz; tÞ �Arðz; tÞ2 � 3Aiðz; tÞ2

3Arðz; tÞ2 þ Aiðz; tÞ2 2Arðz; tÞAiðz; tÞ

" #
hrðz; t; sÞ
hiðz; t; sÞ

� �
: ð18Þ

We introduce the collocation points in t as in (5) and define the vector

hðz; sÞ ¼ hrðz; t1; sÞ � � � hrðz; tNt ; sÞ; hiðz; t1; sÞ � � � hiðz; tNt ; sÞ½ �T: ð19Þ

With (19), and ArðzÞ and AiðzÞ as in (6), and with

RðzÞ ¼ c
�2D ArðzÞ½ �D AiðzÞ½ � �D ArðzÞ½ �2 � 3D AiðzÞ½ �2

3D ArðzÞ½ �2 þD AiðzÞ½ �2 2D ArðzÞ½ �D AiðzÞ½ �

" #
;

S0 ¼
� 1

2
aIþ 1

6
b3D3

1
2
b2D2

� 1
2
b2D2 � 1

2
aIþ 1

6
b3D3

" #
; S3 ¼

1

6
b3I;

S1 ¼
1
2
b3D2 b2D1

�b2D1
1
2
b3D2

" #
; S2 ¼

1

2

b3D1 b2I

�b2I b3D1

� �
:

ð20Þ

(18) can be expressed as

d

dz
hðz; sÞ ¼ RðzÞ

�
þ S0 þ sS1 þ s2S2 þ s3S3

�
hðz; sÞ: ð21Þ

Given an initial launch condition hð0; sÞ, one can solve (21) (referred to as FDODE from now on) above

for hðz ¼ L; sÞ for a range of frequencies s ¼ j2pf . 9 However, one has to solve (21) for every value of

s ¼ j2pf that is of interest. We will now put (21) in a form that is amenable to the use of efficient reduced-

order modeling (ROM) techniques [19,20] for the computation of the frequency dependence of hðz ¼ L; sÞ,
where one does not have to solve (21) repeatedly for every frequency s ¼ j2pf of interest. 10 The form for

the output hðz ¼ L; sÞ that will be produced by the algorithm can also be used as its input, i.e., hðz ¼ 0; sÞ.
We introduce the collocation points z ¼ z0; z1; . . . ; zM

hðsÞ ¼ hðz1; sÞ; . . . ; hðzM ; sÞ½ �T; ð22Þ
9 Please see the end of Section 3.2 for a discussion of how one would introduce the noisy perturbation into (21).
10 The form that we will derive is also useful for noise analysis of cascaded chains of amplified fiber spans for a long-haul optical fiber

communication link.
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where z0 ¼ 0 and zM ¼ L. We then apply a (multistep) integration formula to the system of ODEs in (21)

Z0

�
þ sZ1 þ s2Z2 þ s3Z3

�
hðsÞ ¼ Rhð0; sÞ ð23Þ

where the matrices Zi and R depend on the specific integration formula used for the system of ODEs in (21).

Given the ‘‘initial’’ condition hð0; sÞ, we would like to compute hðL; sÞ. Then,

hðL; sÞ ¼ LThðsÞ; ð24Þ

where L ¼ ½0 � � � 0I�T selects the vector hðzM ; sÞ out of the ‘‘long’’ vector hðsÞ. Hence,

hðL; sÞ ¼ LT Z0

�
þ sZ1 þ s2Z2 þ s3Z3

��1
Rhð0; sÞ; ð25Þ

where Zi are NtNz � NtNz, L and R are NtNz � Nt. Nt is the number of time collocation points, and Nz is the

number of z-steps. We assume that the initial launch condition hð0; sÞ is given as a rational matrix function

of s

hð0; sÞ ¼ LT
ic I½ � sTic��1

Ric: ð26Þ

We now put (25) and (26) together and rewrite (25) as follows, in a form suitable for ROM-based s-de-
pendence computation

hðL; sÞ ¼ LT G½ þ sC��1
R; ð27Þ

where

L ¼ ½0 LT 0 0�T; R ¼ RT
ic 0 0 0

� �T
;

Gþ sC ¼

I� sTic 0 0 0

�RLT
ic Z0 þ sZ1 sZ2 sZ3

0 sI �I 0

0 0 sI �I

2
6664

3
7775: ð28Þ

Hence

G ¼

I 0 0 0

�RLT
ic Z0 0 0

0 0 �I 0

0 0 0 �I

2
664

3
775; C ¼

Tic 0 0 0

0 Z1 Z2 Z3

0 I 0 0

0 0 I 0

2
664

3
775: ð29Þ

We will refer to (27) as FDROM during the rest of our treatment.
4. Numerical methods and implementation

In this section, we will describe the numerical solution of

• Eq. (1) (NLSE) for the deterministic mean of the solution of SNLSE, in Section 4.1.

• Eq. (13) (COVODE) for the covariance matrix of the time-collocated zero-mean noise, i.e., stochastic

perturbation, in Section 4.2.
• Eq. (21) (FDODE) and (27) (FDROM) for the frequency-decomposed representation of noise, in

Section 4.3.
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4.1. Numerical solution of NLSE

Eq. (1) is a PDE which combines a low-order (zeroth) non-linear term with higher-order (second and
third) linear terms. To obtain efficient and accurate numerical solutions for such PDEs, it is desirable to use

high-order approximations in space z and time t [21]. Spectral methods offer very high time resolution for

(1) [13,14]. Once the time part of (1) is spectrally discretized and the resulting system of ordinary differential

equations (ODEs) is transformed into the spectral domain, one obtains

d

dz
ÂðzÞ ¼ LÂðzÞ þ N ÂðzÞ

h i
; ð30Þ
where N is a non-linear operator, and L is a diagonal matrix (operator). L has widely varying values on the

diagonal, since the diagonal elements are the summation of a quadratic and cubic function of the frequency

variable (due to second- and third-order dispersion). Hence, the linear part of the system of ODEs in (30) is

stiff. This stiffness combined with the non-linearity in (30) precludes the use of high-order schemes for z-
integration because of severe stability restrictions [14,21]. The stability restriction imposes an upper limit on

the size of the z-steps that can be taken.

L in (30) (which is in the spectral domain) is diagonal and can be applied trivially. However, the non-
linear operator N in (30) needs to be implemented in the time-domain, this requires two FFTs, one to go

back to the time-domain and another one to come back to the spectral domain. The non-linear operator N
is diagonal in the time-domain.

In the optical fiber communication community, the z-stepping method of choice is the so-called split-step

method [13], an explicit z-stepping scheme based on operator splitting. When a sufficiently small step size is

not used with this method, inaccuracies due to instability in numerical integration manifests itself as in-

duced spurious tones, which are called fictitious four-wave mixing in the photonics literature [22].

If an implicit scheme is used for z-stepping, larger steps can be taken compared with an explicit scheme.
However, even implicit z-stepping may suffer from (milder) stability restrictions on the step size when high-

orders are used. One may be limited by a second-order A-stable scheme, e.g., trapezoidal formula.

Moreover, an implicit scheme applied to (30) requires the solution of a system of non-linear equations at

every z-step.
The idea behind the linearly implicit schemes [14,21] arises from the observation that the stiffness in (30)

is due to the linear part, and hence one can use an implicit (possibly A-stable) multi-step formula to advance

the linear part and an explicit high-order scheme to advance the non-linear part. Then, the step-size would

become accuracy-limited and not stability-limited. Moreover, the solution of only a linear system of
equations at every step would be needed. L in (30) is diagonal when time discretization is done with a

spectral method, and hence the linear system of equations that need to be solved at every z-step is diagonal

and has a trivial solution.

Fornberg and Driscoll [14] describe an extension of the linearly implicit scheme above. In addition to

applying separate explicit and implicit integration methods for the non-linear and the linear part, they

also split the linear part into low, medium and high Fourier wavenumber regions. These wavenumber

regions correspond to slow, medium and fast time scales. In the slider method they propose, they use a

different integration scheme for each (Fourier wavenumber) region in the linear part. For the low
Fourier wavenumber region, they use the same explicit high-order scheme used for the non-linear part.

In one version of the slider method, Fornberg and Driscoll [14] use low: AB7/AB7, medium: AB7/AM6

and high: AB7/AM2* for the (non-linear/linear part where ABk is the explicit kth order Adams–Bashfort

formula, and AMk is the implicit kth order Adams–Moulton formula. The diagonal linear term L in

(30) has a complex spectrum with a very small real part compared with the imaginary part. The

(frequency-independent) real part is due to the loss of the fiber, and the (strongly frequency-dependent)
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imaginary part is due to second- and third-order dispersion. The boundaries between the low, medium,

and high Fourier wavenumber regions are determined by the extent of the stability regions along the

imaginary axis for the integration schemes used for the linear part. AM2* above is a modified second-
order formula, which is given by

Ânþ1 � Ân ¼
h
2

3

2
LÂnþ1

�
þ 1

2
LÂn�1

�
ð31Þ

when constant step sizes are used, with h as the z-step size [14]. Note that (31) is a two-step second-order

formula in contrast with the one-step second-order AM2 (trapezoidal rule). It has an error constant of 1=3
compared with 1=12 for AM2. However, its stability region (Fig. 2) extends into the right-half-plane

covering the imaginary axis. Fornberg and Driscoll [14] propose AM2* in place of AM2 for problems with

almost a purely imaginary spectrum. We have implemented a self-starting, fully variable step size version of

Fornberg and Driscoll’s linearly implicit slider method outlined above for the numerical solution of (1):

NLSE for the deterministic multi-channel modulated optical signal. Automatic step size control is per-

formed based on an estimation of the local truncation error [23]. Commonly used step size selection
heuristics [23], as well as new ones we found to be useful that are specific to the linearly implicit slider

scheme described above, have been implemented in our code. The new heuristics are involved with the

coordination of truncation error computation and step size selection in the presence of different integration
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schemes being used for the linear and non-linear parts of (30) and also for the low, medium and high

Fourier wavenumber regions of the linear part.

The numerical solution of NLSE has a computational complexity of OðNzNf logNf Þ, where Nf is the
number of Fourier modes used in the spectral representation, and Nz is the number of z-steps. The storage
complexity is OðNf Þ.

For a comparison of the split-step method and the linearly implicit schemes as well as other integration

schemes for solving stiff non-linear PDEs of the form in (30), please see [14,21].

4.2. Numerical solution of COVODE

In contrast with the non-linear NLSE: (1), COVODE: (13) is a linear system of equations. The right-
hand side (RHS) of COVODE has terms which have z-independent coefficient matrices. These arise from

the linear loss and dispersion terms in the original NLSE. RHS of COVODE also has terms with z-de-
pendent coefficient matrices. These terms arise from the non-linear term in the original NLSE. COVODE is

closely related to NLSE, and the same stiffness properties carry over. Hence, we use the same linearly

implicit slider schemes (described above) for the numerical integration of COVODE. In the context of

COVODE, it is not exactly accurate to call the integration schemes as linearly implicit, because all terms in

COVODE are linear. To be precise, we use implicit sliding schemes for the medium and high wavenumber

loss and dispersion terms in COVODE, and use explicit high-order, e.g., AB7, schemes for the low
wavenumber loss and dispersion terms and the z-varying linear terms due to the non-linearity of the fiber.

Application of the ‘‘linearly’’ implicit integration schemes to COVODE in (13) is straightforward, except

for some tinkering required on how to apply the sliding scheme with a partition of slow, medium and fast

time scales.

We solve COVODE in (13) using the same spectral discretization for time t that we use for NLSE. We

first transform (13) into the spectral domain. Then, the coefficient matrices B2 and B3 are given by (9) where

D2 and D3 are now diagonal matrices.

For COVODE, we use the same z-stepping scheme and the same z-steps that is used and automatically
selected for NLSE. At every z-step, we first compute the solution of NLSE, AcðzÞ ¼ ArðzÞ þ jAiðzÞ, which is

needed to evaluate the z-varying coefficient matrix AðzÞ for COVODE in (8). In the spectral domain, the

evaluation of the term involving AðzÞ in COVODE requires the use of FFTs. When we apply an explicit

multistep scheme to the z-varying terms involvingAðzÞ in COVODE, and an implicit scheme to the loss and

dispersion terms involving a, D2 and D3, we need to solve a matrix equation, at every z-step, of the form

given by

E Kf ðznÞ þ Kf ðznÞ Ey ¼ FðznÞ; ð32Þ

where y denotes conjugate-transpose, and

E ¼ Dd Do

�Do Dd

� �
ð33Þ

where Dd and Do are z-independent diagonal matrices. The subscript f for Kf ðznÞ denotes that we are in the

spectral domain. (32) is a Lyapunov matrix equation [24]. A direct-method solution of the Lyapunov

matrix equation using the Bartels–Stewart algorithm is OðN 3
f Þ [25]. However, since the coefficient matrix E

is in a very special form, we do not need to use the Bartels–Stewart algorithm which is meant to handle

arbitrary coefficient matrices. When E is in the form given by (33), (32) can be solved with a specialized

algorithm that is OðN 2
f Þ, which we outline next.

From (32) with E as in (33), one can write a system of equations for two columns of Kf ðznÞ at a time. The

coefficient matrix for these equations has the form
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E2 ¼
Eþ cI dI
�dI Eþ cI

� �
; ð34Þ

where c and d are the conjugates of two of the entries of Dd and Do. The inverse of this matrix is given by
E�1
2 ¼ G�1 0

0 G�1

� �
Eþ cI �dI
dI Eþ cI

� �
; ð35Þ

where
G ¼ Eð
�

þ cIÞ2 þ d2I
	
: ð36Þ

The structure in (33) is preserved under the operations of matrix addition, matrix square, matrix inverse

and the addition of a multiple of the identity matrix I. Thus, Eþ cI, Eþ cIð Þ2 and Eþ cIð Þ2 þ d2I above are

all exactly in the same form as E in (33). Hence, the inverse of Eþ cIð Þ2 þ d2I can also be computed easily.

The inverse of a matrix of the form in (33) is given by
E�1 ¼ D2
d þD2

o


 ��1
0

0 D2
d þD2

o


 ��1

" #
Dd �Do

Do Dd

� �
: ð37Þ

The special structure of the coefficient matrix E above is due to the fact that we are using an implicit in-

tegration scheme only for the loss and dispersion terms of COVODE, and that the solution is performed in

the spectral domain with a spectral discretization of time t.
With a flat and unstructured representation for the covariance matrix, it is not possible to reduce the

computational complexity of the solution of (32) below OðN 2
f Þ. If the stochastic perturbation is a stationary

process, then the covariance matrix in the spectral domain is diagonal, and in the time domain it is Her-

mitian and Toeplitz. 11 Hence, it is structured and can be represented with OðNf Þ numbers as opposed to

OðN 2
f Þ numbers. However, in general, the stochastic perturbation is non-stationary, and there is no ap-

parent exact structure in the covariance matrix. Still, it is worthwhile to investigate if there is any (nu-

merically approximate) special structure that arises in the noise covariance matrices and how it can be

exploited for efficient representation and computation. With an unstructured, flat representation for the

covariance matrix, the computational complexity for the numerical solution of COVODE is
OðNzN 2

f logNf Þ, the storage complexity is OðN 2
f Þ.

We have implemented the above outlined method for the numerical solution of COVODE: (13)

along with the numerical solution of NLSE: (1). Noise analysis examples generated using this imple-

mentation and a discussion of system performance evaluation using the noise analysis results is in

Section 5.
4.3. Numerical solution and evaluation of FDODE and FDROM

FDODE: (21) is a system of linear ODEs for the frequency-decomposed representation of the stochastic

perturbation, i.e., optical noise. For a given value of frequency s ¼ j2pf , the numerical solution of FDODE

can be performed, again, by using the linearly implicit schemes described above. The terms that arise due to

fiber loss and dispersion, siSi, i ¼ 0; . . . ; 3 in (21), are advanced with implicit sliding schemes. The term due
11 A Toeplitz matrix is a matrix whose entries are constant on each diagonal.
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to non-linearity, RðzÞ in (21), is advanced with an explicit scheme. When FDODE is transformed into the

spectral domain, the linear system of equations that need to be solved at every z-step, also has a coefficient

matrix of the form in (33) and can be trivially solved with OðNf Þ operations using the matrix inverse in (37).
Note that, however, we do not obtain a Lyapunov matrix equation when FDODE is discretized, it is just a

regular linear system of equations. The computational complexity of the solution of (21) is

OðNzNsNf logNf Þ where Ns is the number of grid points in s ¼ j2pf that needs to be computed. The storage

complexity is OðNsNf Þ.
The noise sample variances and correlations are computed using (a discretized version of) the

integral in (15). For an accurate noise characterization, the integral in (15) needs to be computed over

the whole range of the frequencies f used in the spectral representation of the signals and noise.

Thus, we need to evaluate FDODE for a range of grid points in s ¼ j2pf that covers the whole
spectrum that is used in the spectral representations. For simplicity and efficiency in computations, we

choose this grid to be the same frequency grid used for the Fourier modes in the signal spectral

representation, i.e., Ns ¼ Nf . Hence, the computational and storage complexity of the numerical so-

lution of FDODE is the same as that of the numerical solution of COVODE. However, the evalu-

ation of FDODE for a number of grid points can be parallelized easily to run on a cluster of

computers. Evaluations for different values of s ¼ j2pf are totally independent of each other, and

hence this is an ‘‘embarrasingly parallel’’ operation.

With the ROM-based formulation FDROM: (27), one can compute the s-dependence of hðz ¼ L; sÞ in
(27) in approximate (Pad�e approximation) analytical (rational) form. A detailed description of reduced-

order modeling and the numerical methods involved is beyond the scope of this paper, and the reader is

referred to [19,20,26] for a detailed discussion. With the ROM-based approach one needs to solve systems

of linear equations with Gþ sC in (28) at an expansion point s ¼ s0, where the expansion point is for the

Pad�e approximation that will be computed for the rational function hðz ¼ L; sÞ of s in (27). Solving a linear

system of equations with Gþ sC as the coefficient matrix corresponds to solving versions of (21) from z ¼ 0

to z ¼ L. We again use the linearly implicit schemes for this computation as described before. If we assume

that the number of iterations needed in the ROM-based approach is much fever than the size of the
problem [26], the computational complexity of the ROM-based evaluation of FDROM in (27) is

OðNzNf logNf Þ. The storage complexity is OðNzNf Þ. The ROM-based approach can potentially reduce the

computational cost of noise analysis significantly.

We have implemented the numerical solution of FDODE: (21) outlined above. Noise analysis examples

that will be presented in Section 5 were also run using this implementation for the frequency-decomposed

formulation. As expected, we obtained the same results as the covariance matrix formulation produced.

This implementation is parallelizable as opposed to the implementation for the numerical solution of

COVODE: (13). Moreover, the frequency-decomposed formulation offers further potentially significant
computational benefits in the ROM-based form in FDROM. The implementation of the parallelized

version of the numerical solution of FDODE: (21) and the ROM-based evaluation of FDROM is part of

the current/future work.
5. Practical results and discussion

In this section, we report results using the formulations, computational techniques and the imple-
mentations described throughout the paper. More specifically, the results that will be presented here

have been obtained from the numerical solutions of NLSE: (1), COVODE: (13) and FDODE: (21).

These equations are solved using a spectral discretization for the time variable t with a Fourier basis, as

explained in Section 4. Note that, as explained in Sections 4.2 and 4.3, COVODE: (13) and FDODE:
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(21) have coefficient matrices that are functions of the solution of the NLSE: (1). We compute the

solutions of these equations in parallel, and at every z-step, the solution of NLSE: (1) is used to

evaluate the coefficient matrices for COVODE: (13) and FDODE: (21).
The initial (launch) condition for NLSE: (1) is determined by the deterministic (or useful) part of the

input excitation to the system. The subsection titles below, where appropriate, characterize the determin-

istic initial launch condition that is being considered. For example, in Section 5.7 below, we set the de-

terministic initial condition for NLSE: (1) to be the combination (summation) of a number of carriers

modulated with random pulse streams.

The initial (launch) conditions for COVODE: (13) and FDODE: (21) are determined by the sto-

chastic (noise) excitation on the system. For all of the results we present in this section, the initial

condition for COVODE: (13) and FDODE: (21) is set up in such a way that it models a stochastic
perturbation which is a white and stationary Gaussian noise (as a function of t). There may also be

additional forcing terms in COVODE: (13) and FDODE: (21) which are localized in z, as described at

the end of Section 3.2. These localized stochastic perturbations model noise added by discrete/lumped

amplifiers to the system at certain sites along the propagation direction. Even though we have not

considered distributed forcing terms in z for COVODE: (13) and FDODE: (21) (e.g., for modeling the

noise added by distributed amplifiers), our formulations and computational techniques are general

enough to handle such distributed stochastic perturbations, as explained in Section 3.2.

We have verified the accuracy and correctness of our numerical results by comparing them to analytical
results for cases where such results are available. Moreover, the accuracy and consistency of our numerical

results were also verified by comparing the stochastic perturbation characterizations obtained using the co-

variance matrix based approach (based on solving COVODE: (13)) with the ones obtained using the fre-

quency-decomposed approach (based on solving FDODE: (21)). Comparison of our computational

techniques with the Monte Carlo simulation based approaches, and comparisons with experimental (actual

measurements on physical systems) results are part of the future work. The convergence behavior of the

numerical methods presented in the paper is typical of spectral discretization for the time variable t, and of

linear multistep methods for discretization in z.
We now present practical results obtained by an application of the formulations and the computational

techniques developed in the paper to the investigation of signal–noise mixing due to the optical fiber non-

linearities in fiber-optic telecommunication systems. For a better appreciation of the results to be presented,

and for definitions and terminology, please refer to Section 2.
5.1. System model

For the noise analysis examples we are going to present in this section, we use the model of an optical
fiber communication link like the one shown in Fig. 1. The frequency separation between channels

(difference between the center frequencies of the modulated carriers) was set to 25 GHz. The span length

between amplifier sites was set to 80 km. In the link of Fig. 1, there is an OA before the first span of

fiber. This OA sets the launch power for the channels, which was chosen as 10 mW/channel for all of the

simulations that we will present. The WDM signal is launched into the link with the noise added by the

first OA. The OAs along the link compensate for the loss of one span of fiber. They amplify the signal

channels as well as the optical noise (which was added by the previous OAs along the link and

‘‘modified’’ by the fiber non-linearity). The parameters used for the single-mode fiber were: a ¼ 0:25 dB/
km, b2 ¼ �21:6 ps2/km, b3 ¼ 0:128 ps3/km, c ¼ 1:2 W�1 km�1. Thus, the loss of a fiber span with a length

of 80 km is 20 dB. Hence, the OAs in the link have a power gain of 20 dB. The noise added by the OAs

is modeled as a complex (with uncorrelated in-phase and quadrature components), white (constant

spectral density) and stationary (constant power, i.e., variance, as a function of time) process. The
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channel-combining and channel-selection bandpass filters in the WDM multiplexer 12 and WDM de-

multiplexer 13 were assumed to be ideal brick-wall filters.

For all of the examples we will present, number of Fourier modes for spectral time discretization Nf was
set to 256, and 16 bits that repeat periodically were used in random pulse streams. The number of z-steps Nz

depends on the truncation error tolerances and the frequency content of the signals being simulated. For

signals with rich content in higher frequencies, smaller z-steps are required. For the simulations we per-

formed, Nz ranged in 400–4000 for an 80 km length of fiber.

5.2. Fiber without non-linearity

If the fiber has no non-linearity, the noise analysis becomes trivial, because no signal–noise mixing
occurs. The dispersion in the fiber still causes (linear) distortion to the signal channels. However, the

second-order stochastic properties, i.e., the spectral density, of optical noise is not affected, because dis-

persion is equivalent to an all-pass filter with phase distortion. When a stochastic process passes through

such a filter, its spectral properties remain unchanged. Thus, without non-linearity, the optical noise at the

end of link, impinging on the receiver, is still stationary and white. The contribution from each OA to the

total accumulated optical noise at the end of the link is the same, because the OAs compensate for the loss

of one span of fiber. The optical noise from different OAs is assumed to be uncorrelated with each other.

5.3. Fiber without dispersion, and a single unmodulated carrier

The noise analysis for this very special case can be performed analytically, as was done by Gordon and

Molleanuer [15]. In this case, optical noise (quadrature component with respect to the carrier) experiences

(uncolored) amplification but stays white, and also stationary (assuming that the complex envelope in

NLSE is centered at the single unmodulated carrier). We compared the numerical results we obtained with

our noise simulator with the analytical results 14 in [15], and as expected, the agreement is exact.

5.4. Stationary vs non-stationary, white vs colored noise

Stationary noise is characterized by a time-domain covariance matrix Kt which is Hermitian and

Toeplitz. In the spectral domain, the covariance matrix is diagonal, indicating that there is no spectral

correlation. The spectral domain covariance matrix for non-stationary noise is non-diagonal, and in the

time-domain, it is not Toeplitz. For instance, the values on the main diagonal (i.e., the variance or noise

power as a function of time) of the time-domain covariance matrix are not equal for non-stationary noise.

From now on and in the figures that will follow, we will use Kf to indicate the spectral domain covariance
matrix, and Kt for the time-domain covariance matrix. Please recall that Kt is the covariance matrix for the

time samples of optical noise, and both Kt and Kf are a function of z, the position along the fiber link.

White noise is characterized by a diagonal Kt (indicating no correlation between the time samples of noise)

and a Hermitian Toeplitz Kf . Notice that this characterization is the dual of the characterization for sta-

tionary noise described above. Colored noise has a non-diagonal Kt and hence a non-Toeplitz Kf . Note that

white noise is not necessarily stationary. We can now deduce that white and stationary noise has a diagonal
12 An ideal WDM multiplexer is a device which takes two (or more) signals (modulated carriers with different center frequencies)

m1ðtÞ exp jxc1tð Þ and m2ðtÞ exp jxc2tð Þ, and produces at its output the combined/composite signal m1ðtÞ exp jxc1tð Þ þ m2ðtÞ exp jxc2tð Þ.
13 An ideal WDM demultiplexer is a device which takes a composite signal m1ðtÞ exp jxc1tð Þ þ m2ðtÞ exp jxc2tð Þ composed of two (or

more) signals (modulated carriers with different center frequencies) and produces m1ðtÞ exp jxc1tð Þ and m2ðtÞ exp jxc2tð Þ separately at its
outputs.
14 The results in [15] are approximate if the number of spans is not large, and they need to be modified to become exact for few spans.
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Kf and diagonal Kt with constant entries on the diagonal. 15 The model that we use for the noise added by

the OAs is white and stationary.

5.5. Comb of unmodulated carriers

We first present noise analysis results for the case of unmodulated carriers. We simulated a system like in
Fig. 1 with 1, 3 and 5 WDM channels. Fig. 3 shows the main diagonal of Kf for the optical noise before the

bandpass channel select filter (WDM demux) in the receiver. Kf in all of the figures we are going to present

is normalized with the Kf one would obtain without any non-linearity in the fiber. Hence, the y-axis in all of

Kf plots represents noise amplification (in dBs) due to signal–noise mixing. In Fig. 3, the total noise power,

total for the in-phase and quadrature components, is shown. For the 5-channel case, the noise amplification

at the carrier frequencies reaches �4 dB. It decreases rapidly as one moves away from the carrier fre-

quencies. This decrease is due to dispersion in the fiber. Without dispersion, the noise amplification would

have been uncolored, constant for all frequencies and equal to the value at f ¼ 0. Hence, without dis-
persion, the effects of signal–noise mixing would have been disastrous. Moreover, as observed in Fig. 3, the

increase in noise amplification (away from the carriers) from the 1-channel to the 3-channel case is more

than the increase from the 3-channel case to the 5-channel one. This means that signal–noise mixing due to

nearby channels is more severe than the noise–signal mixing due to channels further away. This is again due

to dispersion. Without dispersion, the noise–signal mixing severity would be independent of the frequency

separation between channels. The above is true only for noise amplification away from the carrier fre-

quencies. The noise amplification at the carrier frequencies is not affected by dispersion and increases se-

verely as the number of channels increase. In fact, the noise amplification at the carrier frequencies is
directly proportional to the number of channels. However, the noise amplification away from the carrier
15 Hermitian, Toeplitz and diagonal matrix ¼ a scalar multiple of the identity matrix.
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frequencies has a much milder dependence on the number of channels and does not increase much more as

the number of channels is increased. With unmodulated carriers, the noise before the WDM demux is non-

stationary, however it becomes stationary after the bandpass channel select filter.

5.6. Carriers modulated with a single pulse

We now present noise analysis results when the carriers are modulated with a single pulse. Upper plot in

Fig. 4 shows the spectrum of the signal launched into the fiber, and also the signal spectrum at the end of

the span. Bottom plot in Fig. 4 is the main diagonal of Kf before the channel select filter. For this case, the

noise after the channel select filter is non-stationary, which can be observed from the non-diagonal Kf in

Fig. 5.

5.7. Carriers modulated with random pulse stream

We will now compare the noise analysis results for unmodulated carriers and carriers modulated with a

random pulse stream. Fig. 6 shows diag(Kf ) for unmodulated and random pulse stream modulated carriers,

both before the channel select filter. The average carrier power was kept equal for the two cases. We observe

that, with modulation, the magnitude of noise amplification at the carrier frequency decreases. However,

the noise amplification at frequencies away from, and in-between, the carriers increases. The total inte-
grated noise power is approximately equal for these two cases. If we focus on the noise spectrum for the

channel of interest centered at f ¼ 0, there is more noise power in high frequencies in the modulated case

compared with the unmodulated one. This, in time domain, corresponds to a smaller correlation width for
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noise. In other words, if noise is sampled at the bit rate, then two consecutive samples will have a larger

correlation in the unmodulated case compared with the modulated one.

Fig. 7 shows diag(Kt) for a carrier that was modulated with a random pulse stream, after the bandpass
channel select filter. The noise in the unmodulated case is stationary after the channel select filter. However,

it is non-stationary in the modulated case, with a time-varying noise variance, as observed in Fig. 7. In this

case, the noise covariance matrix in the spectral domain is non-diagonal, as seen in Fig. 8.

5.8. System design implications and performance evaluation

The results we obtained above using the noise analysis methodology we developed and implemented

have significant design implications, and can be used in system performance (BER) evaluations, which we
briefly outline and summarize next.

Dispersion plays a significant role in the process of signal–noise mixing. The effects of noise–signal

mixing would be disastrous without dispersion in the fiber.

With dispersion and non-linearity in the fiber, the optical noise experiences colored amplification due to

signal–noise mixing, as seen in Fig. 6. Amplification is more severe around the carrier frequencies and it is

proportional to the number of channels. Amplification away from the carrier frequencies is much smaller

and has a very mild dependence on the number of channels. The optical noise sampled at the bit rate in the

receiver has much larger power (compared with the case without signal–noise mixing) but the consecutive
samples of noise becomes highly correlated due to low-frequency enhanced colored amplification. However,

the correlation between consecutive samples is not as large as one would predict with unmodulated car-

riers. The modulation of the carriers results in a relatively smaller amplification of low (around the carriers)

frequency noise and a relatively larger amplification of high (around the midpoint between the carriers)

frequency noise. The correlation between consecutive noise samples can be used to guide the selection of the

modulation scheme in system design. For instance, modulation schemes which encode data differentially
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between two samples at the bit rate can make use of the correlation between the noise samples to improve

BER performance in the presence of signal–noise mixing. Without signal–noise mixing, the optical noise

stays white and the consecutive noise samples are uncorrelated.

The full stochastic characterization, including all correlation information, of optical noise samples at the

receiver is available from the noise covariance matrices that our analysis techniques produce. This infor-

mation can be used in BER performance evaluation.
6. Conclusions and future work

We have presented novel, non-Monte Carlo formulations and computational methods for the stochastic

characterization of the solution of the stochastic non-linear Schr€odinger equation. Our techniques are

aimed at directly producing the ensemble-averaged probabilistic characterization desired for the solution of

the stochastic non-linear Schr€odinger equation, in a non-Monte Carlo manner without having to compute
many realizations needed for ensemble-averaging. We are mainly motivated by the predominant role of the

stochastic non-linear Schr€odinger equation as a modeling tool in the design of optically amplified long

distance fiber telecommunication systems. However, the usefulness of the work presented in the paper is by

no means restricted to the analysis of optical fiber communication systems, and we plan to investigate other

applications for our work in the analysis of other stochastic wave propagation phenomena, and also in the

general setting of computational techniques for stochastic partial differential equations.

More efficient numerical methods and other high-order stiff z-stepping strategies for SNLSE, COVODE

and FDODE, a parallelized and/or reduced-order-modeling based implementation of the frequency-de-
composed formulation described in Section 3.3, investigation of efficient special-structure-exploiting rep-

resentations for the noise covariance matrices are all part of the future work.

We plan to compare our computational techniques with the Monte Carlo simulation based approaches,

and compare our results with the experimental ones obtained by actual measurements on physical systems.
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We plan to include the implementations of the numerical techniques described in the paper in an analysis

and design tool for optical fiber communication links to enable their use in the design of signal–noise

mixing immune modulation schemes and for accurate and efficient system BER estimation.
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